here are the answers with detailed workings for the Grade 12 Mathematics "Differential Calculus" questions:
1. Differentiate the function:
\[
f(x) = 3x^4 - 5x^2 + 2x - 7
\]
**Solution:**
\[
f'(x) = \frac{d}{dx}(3x^4) - \frac{d}{dx}(5x^2) + \frac{d}{dx}(2x) - \frac{d}{dx}(-7)
\]
\[
f'(x) = 12x^3 - 10x + 2
\]
2. Find the derivative of the function:
\[
g(x) = \sin(3x) + \cos(2x)
\]
**Solution:**
\[
g'(x) = \frac{d}{dx}(\sin(3x)) + \frac{d}{dx}(\cos(2x))
\]
\[
g'(x) = 3\cos(3x) - 2\sin(2x)
\]
3. If \( h(x) = e^{2x} \cdot \ln(x) \), determine \( h'(x) \) using the product rule.
**Solution:**
\[
h'(x) = \frac{d}{dx}(e^{2x}) \cdot \ln(x) + e^{2x} \cdot \frac{d}{dx}(\ln(x))
\]
\[
h'(x) = 2e^{2x} \cdot \ln(x) + e^{2x} \cdot \frac{1}{x}
\]
\[
h'(x) = 2e^{2x} \ln(x) + \frac{e^{2x}}{x}
\]
4. Given \( f(x) = \frac{2x^3 - 4x^2 + x}{x^2} \), simplify the function and then find \( f'(x) \).
**Solution:**
\[
f(x) = \frac{2x^3}{x^2} - \frac{4x^2}{x^2} + \frac{x}{x^2}
\]
\[
f(x) = 2x - 4 + \frac{1}{x}
\]
\[
f'(x) = \frac{d}{dx}(2x) - \frac{d}{dx}(4) + \frac{d}{dx}\left(\frac{1}{x}\right)
\]
\[
f'(x) = 2 - \frac{1}{x^2}
\]
5. Determine the critical points of the function:
\[
f(x) = x^3 - 6x^2 + 9x + 1
\]
**Solution:**
\[
f'(x) = \frac{d}{dx}(x^3 - 6x^2 + 9x + 1)
\]
\[
f'(x) = 3x^2 - 12x + 9
\]
Set \( f'(x) = 0 \) to find critical points:
\[
3x^2 - 12x + 9 = 0
\]
\[
x^2 - 4x + 3 = 0
\]
\[
(x - 1)(x - 3) = 0
\]
\[
x = 1 \text{ or } x = 3
\]
6. For the function \( f(x) = \ln(x^2 + 1) \), find the second derivative, \( f''(x) \).
**Solution:**
\[
f'(x) = \frac{d}{dx}(\ln(x^2 + 1))
\]
\[
f'(x) = \frac{2x}{x^2 + 1}
\]
Now, find \( f''(x) \):
\[
f''(x) = \frac{d}{dx}\left(\frac{2x}{x^2 + 1}\right)
\]
\[
f''(x) = \frac{(2)(x^2 + 1) - 2x(2x)}{(x^2 + 1)^2}
\]
\[
f''(x) = \frac{2x^2 + 2 - 4x^2}{(x^2 + 1)^2}
\]
\[
f''(x) = \frac{-2x^2 + 2}{(x^2 + 1)^2}
\]
\[
f''(x) = \frac{2(1 - x^2)}{(x^2 + 1)^2}
\]
7. Solve the differential equation:
\[
\frac{dy}{dx} = 5x^4 - 3x^2 + 2
\]
**Solution:**
Integrate both sides with respect to \( x \):
\[
y = \int (5x^4 - 3x^2 + 2) \, dx
\]
\[
y = \frac{5}{5}x^5 - \frac{3}{3}x^3 + 2x + C
\]
\[
y = x^5 - x^3 + 2x + C
\]
8. Find the equation of the tangent line to the curve \( y = x^2 - 4x + 4 \) at the point \( (2, 0) \).
**Solution:**
First, find the derivative:
\[
y' = \frac{d}{dx}(x^2 - 4x + 4)
\]
\[
y' = 2x - 4
\]
At \( x = 2 \):
\[
y' = 2(2) - 4 = 0
\]
The slope of the tangent line is 0, so the equation of the tangent line is horizontal at \( y = 0 \):
\[
y = 0
\]
9. Determine the local maxima and minima for the function:
\[
f(x) = 2x^3 - 9x^2 + 12x - 4
\]
**Solution:**
First, find the derivative:
\[
f'(x) = 6x^2 - 18x + 12
\]
Set \( f'(x) = 0 \) to find critical points:
\[
6x^2 - 18x + 12 = 0
\]
\[
x^2 - 3x + 2 = 0
\]
\[
(x - 1)(x - 2) = 0
\]
\[
x = 1 \text{ or } x = 2
\]
Find the second derivative to determine concavity:
\[
f''(x) = 12x - 18
\]
At \( x = 1 \):
\[
f''(1) = 12(1) - 18 = -6 \quad (\text{concave down, local maximum})
\]
At \( x = 2 \):
\[
f''(2) = 12(2) - 18 = 6 \quad (\text{concave up, local minimum})
\]
10. Evaluate the following limit using L'Hôpital's rule:
\[
\lim_{{x \to 0}} \frac{\sin(x)}{x}
\]
**Solution:**
Using L'Hôpital's rule:
\[
\lim_{{x \to 0}} \frac{\sin(x)}{x} = \lim_{{x \to 0}} \frac{\cos(x)}{1} = \cos(0) = 1
\]
Feel free to ask if you need any further explanations or have any more questions!
0 Comments
VHAVENDA IT SOLUTIONS AND SERVICES WOULD LIKE TO HEAR FROM YOU
https://vhavendaitsolutions.blogspot.com/search
https://muvuledzim.systeme.io/85693c69